3 years ago

A Method to Determine the Maximum Radius of Defocused Protons after Self-Modulation in AWAKE.

Turner Marlene, Patric Muggli, Edda Gschwendtner

The AWAKE experiment at CERN aims to drive GV/m plasma wakefields with a self-modulated proton drive bunch, and to use them for electron acceleration. During the self-modulation process, protons are defocused by the transverse plasma wakefields and form a halo around the focused bunch core. The two-screen setup integrated in AWAKE measures the transverse, time-integrated proton bunch distribution downstream the \unit[10]{m} long plasma to detect defocused protons. By measuring the maximum radius of the defocused protons we attempt calculate properties of the self-modulation. In this article, we develop a routine to identify the maximum radius of the defocused protons, based on a standard contour method. We compare the maximum radius obtained from the contour to the logarithmic lineouts of the image to show that the determined radius identifies the edge of the distribution.

Publisher URL: http://arxiv.org/abs/1712.00315

DOI: arXiv:1712.00315v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.