3 years ago

FEAST Eigensolver for Nonlinear Eigenvalue Problems.

Agnieszka Międlar, Eric Polizzi, Brendan Gavin

The linear FEAST algorithm is a method for solving linear eigenvalue problems. It uses complex contour integration to calculate the eigenvectors whose eigenvalues that are located inside some user-defined region in the complex plane. This makes it possible to parallelize the process of solving eigenvalue problems by simply dividing the complex plane into a collection of disjoint regions and calculating the eigenpairs in each region independently of the eigenpairs in the other regions. In this paper we present a generalization of the linear FEAST algorithm that can be used to solve nonlinear eigenvalue problems. Like its linear progenitor, the nonlinear FEAST algorithm can be used to solve nonlinear eigenvalue problems for the eigenpairs whose eigenvalues lie in a user-defined region in the complex plane, thereby allowing for the calculation of large numbers of eigenpairs in parallel. We describe the nonlinear FEAST algorithm, and use several physically-motivated examples to demonstrate its properties.

Publisher URL: http://arxiv.org/abs/1801.09794

DOI: arXiv:1801.09794v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.