3 years ago

Stochastic band structure for waves propagating in periodic media or along waveguides.

Maria E. Korotyaeva, Vincent Laude

We introduce the stochastic band structure, a method giving the dispersion relation for waves propagating in periodic media or along waveguides, and subject to material loss or radiation damping. Instead of considering an explicit or implicit functional relation between frequency $\omega$ and wavenumber $k$, as is usually done, we consider a mapping of the resolvent set in the dispersion space $(\omega, k)$. Bands appear as as the trace of Lorentzian responses containing local information on propagation loss both in time and space domains. For illustration purposes, the method is applied to a lossy sonic crystal, a radiating surface phononic crystal, and a radiating optical waveguide. The stochastic band structure can be obtained for any system described by a time-harmonic wave equation.

Publisher URL: http://arxiv.org/abs/1801.09914

DOI: arXiv:1801.09914v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.