3 years ago

Features in the diffraction of a scalar plane wave from doubly-periodic Dirichlet and Neumann surfaces.

Veronica Pérez-Chávez, Arkadiusz Jȩdrzejewski, Alexei A. Maradudin, Ingve Simonsen

The diffraction of a scalar plane wave from a doubly-periodic surface on which either the Dirichlet or Neumann boundary condition is imposed is studied by means of a rigorous numerical solution of the Rayleigh equation for the amplitudes of the diffracted Bragg beams. From the results of these calculations the diffraction efficiencies of several of the lowest order diffracted beams are calculated as functions of the polar and azimuthal angles of incidence. The angular dependencies of the diffraction efficiencies display features that can be identified as Rayleigh anomalies for both types of surfaces. In the case of a Neumann surface additional features are present that can be attributed to the existence of surface waves on such surfaces. Some of the results obtained through the use of the Rayleigh equation are validated by comparing them with results of a rigorous Green's function numerical calculation.

Publisher URL: http://arxiv.org/abs/1801.09951

DOI: arXiv:1801.09951v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.