3 years ago

Downsampling of optical frequency combs.

Scott A. Diddams, Scott B. Papp, Daniel C. Cole

We demonstrate repetition-rate downsampling of optical frequency combs by way of pulse gating. The reduced repetition rate enables increased pulse energy, facilitating efficient spectral broadening and f-2f interferometry. To explore the technique, we downsample a 250 MHz repetition-rate comb to 25 MHz and detect the carrier-envelope offset frequency of the downsampled pulse train. We investigate the effects of pulse gating on the noise properties of the pulse train and the limitations of the technique by characterizing the phase-noise spectrum of the downsampled comb and deliberately imposing timing jitter on the pulse gate. We show that, up to an expected reduction modulo the new repetition rate, downsampling neither shifts nor introduces noise to the carrier-envelope offset frequency of the comb above the level of several microhertz. Additionally, we discuss the effect of downsampling on the spectrum of intensity fluctuations of the optical pulse train. Finally, we discuss some practical considerations relevant for the application of the technique to frequency combs with repetition rates in the 10 GHz range and higher.

Publisher URL: http://arxiv.org/abs/1310.4134

DOI: arXiv:1310.4134v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.