3 years ago

Diffusion with Resetting Inside a Circle.

Andreas Schadschneider, Christos Christou, Abhinava Chatterjee

We study the Brownian motion of a particle in a bounded circular 2-dimensional domain, in search for a stationary target on the boundary of the domain. The process switches between two modes: one where it performs a two-dimensional diffusion inside the circle and one where it travels along the one-dimensional boundary. During the diffusion, the Brownian particle resets to its initial position with a constant rate $r$. The Fokker-Planck formalism allows us to calculate the mean time to absorption (MTA) as well as the optimal resetting rate for which the MTA is minimized. From the derived analytical results the parameter regions where resetting reduces the search time can be specified. We also provide a numerical method for the verification of our results.

Publisher URL: http://arxiv.org/abs/1801.09971

DOI: arXiv:1801.09971v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.