3 years ago

Ergodicity breaking transition in a glassy soft sphere system at small but non-zero temperatures.

Moumita Maiti, Michael Schmiedeberg

While the glass transition at non-zero temperature seems to be hard to access for experimental, theoretical, or simulation studies, jamming at zero temperature has been explored in great detail. It is a widely discussed question whether this athermal jamming transition is related to the glass transition. Motivated by the exploration of the energy landscape that has been successfully used to describe athermal jamming, we introduce a new method to determine whether the configuration space of a soft sphere system can be explored within a reasonable timescale or not, i.e., whether the system is ergodic or effectively non-ergodic. While in case of athermal jamming for a given random starting configuration only the local energy minimum is determined, we allow the thermally excited crossing of energy barriers. Interestingly, we observe that a transition exists where the system becomes effectively non-ergodic if the density is increased. In the limit of small but non-zero temperatures the density where the ergodicity breaking transition occurs approaches a value that is independent of temperature and below the transition density of athermal jamming. This confirms recent computer simulation studies where athermal jamming occurs deep inside the glass phase. In addition, with our method we determined the critical behavior of the ergodicity breaking transition and show that it is in the universality class of directed percolation. Therefore, our approach not only makes the transition from an ergodic to an effectively non-ergodic systems easily accessible and helps to reveal its universality class but also shows that it is fundamentally different from athermal jamming.

Publisher URL: http://arxiv.org/abs/1705.04095

DOI: arXiv:1705.04095v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.