4 years ago

Reactions of Criegee Intermediates with Non-Water Greenhouse Gases: Implications for Metal Free Chemical Fixation of Carbon Dioxide

Reactions of Criegee Intermediates with Non-Water Greenhouse Gases: Implications for Metal Free Chemical Fixation of Carbon Dioxide
Joseph S. Francisco, Manoj Kumar
High-level theoretical calculations suggest that a Criegee intermediate preferably interacts with carbon dioxide compared to two other greenhouse gases, nitrous oxide and methane. The results also suggest that the interaction between Criegee intermediates and carbon dioxide involves a cycloaddition reaction, which results in the formation of a cyclic carbonate-type adduct with a barrier of 6.0–14.0 kcal/mol. These results are in contrast to a previous assumption that the reaction occurs barrierlessly. The subsequent decomposition of the cyclic adduct into formic acid and carbon dioxide follows both concerted and stepwise mechanisms. The latter mechanism has been overlooked previously. Under formic acid catalysis, the concerted decomposition of the cyclic carbonate may be favored under tropospheric conditions. Considering that there is a strong nexus between carbon dioxide levels in the atmosphere and global warming, the high reactivity of Criegee intermediates could be utilized for designing efficient carbon capture technologies.

Publisher URL: http://dx.doi.org/10.1021/acs.jpclett.7b01762

DOI: 10.1021/acs.jpclett.7b01762

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.