3 years ago

Microfluidic Chemical Function Generator for Probing Dynamic Cell Signaling

Microfluidic Chemical Function Generator for Probing Dynamic Cell Signaling
Shuangqian Yan, Bi-Feng Liu, Jie Wang, Peng Chen, Wei Du, Yiwei Li, Xiaojun Feng, Yiran Guo
Cellular environments are inherently dynamic and generally involve complex, temporally varying signals. Reconstruction of these environments with high spatial and temporal fidelity and simultaneous imaging of intracellular dynamics in live cells remains a major challenge. In this paper, a microfluidic chemical function generator (μCFG) was proposed for probing cell dynamic signaling with high temporal resolution. By combining a hydrodynamic gating module with a chaotic advection mixing module, the μCFG was able to generate a variety of chemical waveforms, such as digital pulsatile chemical waveforms with a frequency higher than 10 Hz and analog chemical waveforms with a frequency higher than 0.2 Hz. The shape, frequency, amplitude, and duty cycle of the waveforms could be also conveniently modulated. To demonstrate the capability of μCFG of probing fast biological processes and elucidate signal transduction pathways in complex signaling networks, a variety of temporal responses of Ca2+ signaling to ATP-induced activation of the P2Y receptor, a prototypical G-protein coupled receptor (GPCR), were investigated in live cells by precisely and dynamically controlling their microenvironment.

Publisher URL: http://dx.doi.org/10.1021/acs.analchem.7b01967

DOI: 10.1021/acs.analchem.7b01967

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.