3 years ago

Core–Shell Nitrogen-Doped Carbon Hollow Spheres/Co3O4 Nanosheets as Advanced Electrode for High-Performance Supercapacitor

Core–Shell Nitrogen-Doped Carbon Hollow Spheres/Co3O4 Nanosheets as Advanced Electrode for High-Performance Supercapacitor
Wei You, Tao Liu, Liuyang Zhang, Jiaguo Yu
Co3O4/nitrogen-doped carbon hollow spheres (Co3O4/NHCSs) with hierarchical structures are synthesized by virtue of a hydrothermal method and subsequent calcination treatment. NHCSs, as a hard template, can aid the generation of Co3O4 nanosheets on its surface; while SiO2 spheres, as a sacrificed-template, can be dissolved in the process. The prepared Co3O4/NHCS composites are investigated as the electrode active material. This composite exhibits an enhanced performance than Co3O4 itself. A higher specific capacitance of 581 F g−1 at 1 A g−1 and a higher rate performance of 91.6% retention at 20 A g−1 are achieved, better than Co3O4 nanorods (318 F g−1 at 1 A g−1 and 67.1% retention at 20 A g−1). In addition, the composite is employed as a positive electrode to fabricate an asymmetric supercapacitor. The device can deliver a high energy density of 34.5 Wh kg−1 at the power density of 753 W kg−1 and display a desirable cycling stability. All of these attractive results make the unique hierarchical Co3O4/NHCS core–shell structure a promising electrode material for high-performance supercapacitors. The Co3O4/N-doped carbon hollow sphere (Co3O4/NHCS) with a core–shell structure, where Co3O4 nanosheets serve as the shell and NHCS as the core, has large surface area and hierarchical porous structure. The asymmetric supercapacitor assembled with Co3O4/NHCS as a positive electrode and activated carbon as a negative electrode exhibits an excellent electrochemical performance.

Publisher URL: http://onlinelibrary.wiley.com/resolve/doi

DOI: 10.1002/smll.201702407

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.