3 years ago

Simplifying large spin bootstrap in Mellin space

Kausik Ghosh, Aninda Sinha, Parijat Dey

Abstract

We set up the conventional conformal bootstrap equations in Mellin space and analyse the anomalous dimensions and OPE coefficients of large spin double trace operators. By decomposing the equations in terms of continuous Hahn polynomials, we derive explicit expressions as an asymptotic expansion in inverse conformal spin to any order, reproducing the contribution of any primary operator and its descendants in the crossed channel. The expressions are in terms of known mathematical functions and involve generalized Bernoulli (Nørlund) polynomials and the Mack polynomials and enable us to derive certain universal properties. Comparing with the recently introduced reformulated equations in terms of crossing symmetric tree level exchange Witten diagrams, we show that to leading order in anomalous dimension but to all orders in inverse conformal spin, the equations are the same as in the conventional formulation. At the next order, the polynomial ambiguity in the Witten diagram basis is needed for the equivalence and we derive the necessary constraints for the same.

Publisher URL: https://link.springer.com/article/m/10.1007/JHEP01(2018)152

DOI: 10.1007/JHEP01(2018)152

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.