3 years ago

Crystal structure of chromo barrel domain of RBBP1

P., Zhou, Li, Feng, M., Loppnau, Liu, Y., Lei, Yang
RBBP1 is a retinoblastoma protein (pRb) binding protein acting as a repressor of gene transcription. RBBP1 is a multidomain protein including a chromo barrel domain, and its chromo barrel domain has been reported to recognize histone H4K20me3 weakly, and this binding is enhanced by the simultaneous binding of DNA. However, the molecular basis of this DNA-mediated histone binding by the chromo barrel domain of RBBP1 is unclear. Here we attempted to co-crystallize the chromo barrel domain of RBBP1 with either a histone H4K20me3 peptide alone or with both a histone H4K20me3 peptide and DNA, but only solved the peptide/DNA unbound crystal structure. Our structural analysis indicates that RBBP1 could interact with histone H4K20me3 similar to other histone binding chromo barrel domains, and the surface charge representation analysis of the chromo barrel domain of RBBP1 suggests that the chromo barrel domain of RBBP1 does not have a typical DNA binding surface, indicating that it might not bind to DNA. Consistently, our ITC assays also showed that DNA does not significantly enhance the histone binding ability of the chromo barrel domain of RBBP1.

Publisher URL: http://biorxiv.org/cgi/content/short/257527v1

DOI: 10.1101/257527

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.