3 years ago

Mitosis event recognition and detection based on evolution of feature in time domain

Chenchen Liu, Yan Yan, Weizhi Nie, Tong Hao, Yuting Su

Abstract

Mitosis detection and recognition in phase-contrast microscopy image sequences is a fundamental problem in many biomedical applications. Traditionally, researchers detect all mitotic cells from these image sequences with human eyes, which is tedious and time consuming. In recent years, many computer vision technologies were proposed to help humans to achieve the mitosis detection automatically. In this paper, we present an approach which utilized the evolution of feature in the time domain to represent the feature of mitosis. Firstly, the feature of each cell image is extracted by the different method (GIST, SIFT, CNN). Secondly, we construct the levels of motorists according to the steps of mitosis. The pooling method is utilized to handle the feature fusion in each dimension and in different time segments. Third, the pooling features were combined to one vector to represent the characters of this video. Finally, tradition machine learning method SVM is used to handle the mortises recognition problem. In order to demonstrate the performance of our approach, motorists event detection is made in some microscopy image sequences. In the experiment, some classic methods as comparison method are made in this paper. The corresponding experiments also demonstrate the superiority of our approach.

Publisher URL: https://link.springer.com/article/10.1007/s00138-018-0913-3

DOI: 10.1007/s00138-018-0913-3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.