3 years ago

Transepithelial transport across Caco-2 cell monolayers of angiotensin converting enzyme (ACE) inhibitory peptides derived from simulated in vitro gastrointestinal digestion of cooked chicken muscles

Korat-chicken breast and thigh were subjected to heating at 70, 100 or 121 °C for 30 min and simulated in vitro gastrointestinal digestion. At 70 or 100 °C heating, digests of breast possessed higher ACE inhibitory activity than those of thigh. The highest ACE inhibitory activity was found in the digest of breast cooked at 70 °C (B/H-70), whereas breast heated at 121 °C (B/H-121) exhibited the lowest. The 1-kDa permeate of the B/H-70 digest revealed higher permeability through colorectal adenocarcinoma monolayers and ACE inhibitory activity than did B/H-121. Among nine transported peptides, APP derived from myosin showed the highest ACE inhibition, with a non-competitive characteristic (Ki 0.93 μM). Molecular docking showed that APP interacts with ACE via hydrogen bonds, electrostatic and van der Waals interactions. In conclusion, mild thermal treatment of chicken breast resulted in a higher amount of transported peptides, exerting higher ACE inhibitory activity, which could lead to potential health benefits.

Publisher URL: www.sciencedirect.com/science

DOI: S0308814618300566

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.