4 years ago

π-Extended and Curved Antiaromatic Polycyclic Hydrocarbons

π-Extended and Curved Antiaromatic Polycyclic Hydrocarbons
Wojciech Pisula, Prince Ravat, Felix Hennersdorf, Ke Zhang, Alexey A. Popov, Klaus Müllen, Hartmut Komber, Jan J. Weigand, Stanislav Avdoshenko, Xinliang Feng, Reinhard Berger, Ji Ma, Peter Machata, Junzhi Liu
Synthesis of antiaromatic polycyclic hydrocarbons (PHs) is challenging because the high energy of their highest occupied molecular orbital and low energy of their lowest unoccupied molecular orbital cause them to be reactive and unstable. In this work, two large antiaromatic acene analogues, namely, cyclopenta[pqr]indeno[2,1,7-ijk]tetraphene (CIT, 1a) and cyclopenta[pqr]indeno[7,1,2-cde]picene (CIP, 1b), as well as a curved antiaromatic molecule with 48 π-electrons, dibenzo[a,c]diindeno[7,1,2-fgh:7′,1′,2′-mno]phenanthro[9,10-k]tetraphene (DPT, 1c), are synthesized on the basis of the corona of indeno[1,2-b]fluorene. These three antiaromatic PHs possess a narrow energy gap down to 1.55 eV and exhibit high kinetic stability under ambient conditions. Moreover, these compounds display reversible electron transfer processes in both the cathodic and anodic regimes. Their cation and anion radicals are characterized by in situ vis–NIR absorption and electron paramagnetic resonance spectroelectrochemistry. The X-ray crystallographic analysis confirms that while CIP and CIT manifest planar structures, DPT shows a curved π-conjugated carbon skeleton. The synthetic strategy starting from ortho-substituted benzene units to construct five-membered rings in this work provides a unique entry to novel pentagon-embedding or curved antiaromatic polycyclic hydrocarbons. In addition, besides the detailed chemical and physical investigations, microscale single-crystal fiber field-effect transistors were also fabricated.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b01619

DOI: 10.1021/jacs.7b01619

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.