3 years ago

Pathways of Growth of CdSe Nanocrystals from Nucleant (CdSe)34 Clusters

Pathways of Growth of CdSe Nanocrystals from Nucleant
(CdSe)34 Clusters
Lavrenty G. Gutsev, Bala R. Ramachandran, Gennady L. Gutsev
The initial steps in the growth of quantum platelets from the wurtzite-type (CdSe)34 clusters are simulated using density functional theory with the generalized gradient approximation. The nucleant (CdSe)34 cluster has been chosen for simulations because it has experimentally been found to be a magic-size nucleant for the low-temperature growth of CdSe quantum platelets. According to the results of our calculations, the growth is anisotropic and favors the (0001) direction, which is consistent with the experimental findings. We found that growth in other directions lowers the symmetry of the resulting clusters and that the asymmetrical positioning of rhombic defects causes the growing platelet to bend due to the surface strain, which appears to be the limiting factor of growth. An alternative pathway to quantum platelet growth could proceed via the decomposition of (CdSe)34 to (CdSe)13 in electron-donating media, which was found to be thermodynamically favorable. Side product (CdSe)21 generated in this process is capable of growing via hexagonal stacking as well as propagating as a nanotube.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcc.7b12716

DOI: 10.1021/acs.jpcc.7b12716

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.