3 years ago

Multi-wavelength Polarimetry of Isolated Neutron Stars.

R. P. Mignani

Isolated Neutron Stars are known to be endowed with extreme magnetic fields, whose maximum intensity ranges from 10^12 to 10^15 G, which permeates their magnetospheres. Their surrounding environment is also strongly magnetised, especially in the compact nebulae powered by the relativistic wind from young neutron stars. The radiation from isolated neutron stars and their surrounding nebulae is, thus, supposed to bring a strong polarisation signature. Measuring the neutron star polarisation brings important information on the properties of their magnetosphere and of their highly magnetised environment. Being the most numerous class of isolated neutron stars, polarisation measurements have been traditionally carried out for radio pulsars, hence in the radio band. In this review, I summarise multi-wavelength linear polarisation measurements obtained at wavelengths other than radio both for pulsars and other types of isolated neutron stars and outline future perspectives with the upcoming observing facilities.

Publisher URL: http://arxiv.org/abs/1801.10453

DOI: arXiv:1801.10453v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.