3 years ago

Evidence for precession due to supercritical accretion in ultraluminous X-ray sources.

Hua Feng, Shan-Shan Weng

Most ultraluminous X-ray sources (ULXs) are thought to be supercritical accreting compact objects, where massive outflows are inevitable. Using the long-term monitoring data with the Swift X-ray Telescope, we identified a common feature in bright, hard ULXs: they display a quasi-periodic modulation in their hard X-ray band but not in their soft band. As a result, some sources show a bimodal distribution on the hardness intensity map. We argue that these model-independent results can be well interpreted in a picture that involves supercritical accretion with precession, where the hard X-ray emission from the central funnel is more or less beamed, while the soft X-rays may arise from the photosphere of the massive outflow and be nearly isotropic. It implies that precession may be ubiquitous in supercritical systems, such as the Galactic microquasar SS~433. How the hard X-rays are modulated can be used to constrain the angular distribution of the hard X-ray emission and the geometry of the accretion flow. We also find that two ULX pulsars (NGC 5907 ULX-1 and NGC 7793 P13) show similar behaviors but no bimodal distribution, which may imply that they have a different beaming shape or mechanism.

Publisher URL: http://arxiv.org/abs/1712.09536

DOI: arXiv:1712.09536v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.