3 years ago

Astrometry and exoplanets in the Gaia era: a Bayesian approach to detection and parameter recovery.

David Hobbs, Lennart Lindegren, Piero Ranalli

(abridged) We develop Bayesian methods and detection criteria for orbital fitting, and revise the detectability of exoplanets in light of the in-flight properties of Gaia. Limiting ourselves to one-planet systems as a first step of the development, we simulate Gaia data for exoplanet systems over a grid of S/N, orbital period, and eccentricity. The simulations are then fit using Markov chain Monte Carlo methods. We investigate the detection rate according to three information criteria and the delta chi^2. For the delta chi^2, the effective number of degrees of freedom depends on the mission length. We find that the choice of the Markov chain starting point can affect the quality of the results; we therefore consider two limit possibilities: an ideal case, and a very simple method that finds the starting point assuming circular orbits. Using Jeffreys' scale of evidence, the fraction of false positives passing a strong evidence criterion is < ~0.2% (0.6%) when considering a 5 yr (10 yr) mission and using the Akaike information criterion or the Watanabe-Akaike information criterion, and <0.02% (<0.06%) when using the Bayesian information criterion. We find that there is a 50% chance of detecting a planet with a minimum S/N=2.3 (1.7). This sets the maximum distance to which a planet is detectable to ~70 pc and ~3.5 pc for a Jupiter-mass and Neptune-mass planet, respectively, assuming a 10 yr mission, a 4 au semi-major axis, and a 1 M_sun star. The period is the orbital parameter that can be determined with the best accuracy, with a median relative difference between input and output periods of 4.2% (2.9%) assuming a 5 yr (10 yr) mission. The median accuracy of the semi-major axis of the orbit can be recovered with a median relative error of 7% (6%). The eccentricity can also be recovered with a median absolute accuracy of 0.07 (0.06).

Publisher URL: http://arxiv.org/abs/1704.02493

DOI: arXiv:1704.02493v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.