5 years ago

Learning and executing goal-directed choices by internally generated sequences in spiking neural circuits

John Palmer, Pulin Gong, Adam Keane

by John Palmer, Adam Keane, Pulin Gong

Recent neural ensemble recordings have established a link between goal-directed spatial decision making and internally generated neural sequences in the hippocampus of rats. To elucidate the synaptic mechanisms of these sequences underlying spatial decision making processes, we develop and investigate a spiking neural circuit model endowed with a combination of two synaptic plasticity mechanisms including spike-timing dependent plasticity (STDP) and synaptic scaling. In this model, the interplay of the combined synaptic plasticity mechanisms and network dynamics gives rise to neural sequences which propagate ahead of the animals’ decision point to reach goal locations. The dynamical properties of these forward-sweeping sequences and the rates of correct binary choices executed by these sequences are quantitatively consistent with experimental observations; this consistency, however, is lost in our model when only one of STDP or synaptic scaling is included. We further demonstrate that such sequence-based decision making in our network model can adaptively respond to time-varying and probabilistic associations of cues and goal locations, and that our model performs as well as an optimal Kalman filter model. Our results thus suggest that the combination of plasticity phenomena on different timescales provides a candidate mechanism for forming internally generated neural sequences and for implementing adaptive spatial decision making.

Publisher URL: http://journals.plos.org/ploscompbiol/article

DOI: 10.1371/journal.pcbi.1005669

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.