3 years ago

A statistical mechanics perspective for protein folding from $q$-state Potts model.

Vattika Sivised, Theja N. De Silva

The folding of a peptide chain into a three dimensional structure is a thermodynamically driven process such that the chain naturally evolves to form domains of similar amino acids. The formation of this domain occurs by curling the one dimensional amino acid sequence by moving similar amino acids proximity to each other. We model this formation of domains or ordering of amino acids using q-state Potts model and study the thermodynamic properties using a statistical mechanics approach. Converting the interacting amino acids into an effectively non-interacting model using a mean-field theory, we calculate the Helmholtz free energy (HFE). Then by investigating the HFE, we study the properties of protein folding transition qualitatively. We find that the protein folding phase transition is a strongly first order and the specific heat shows the experimental signatures of this phase transition. Further, we compare these mean-field results with exact transfer matrix results in one dimension and then large $q$ expansion results in two dimensions.

Publisher URL: http://arxiv.org/abs/1709.04813

DOI: arXiv:1709.04813v3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.