3 years ago

Emergence of a Dark Force in Corpuscular Gravity.

Roberto Casadio, Mariano Cadoni, Matteo Tuveri, Andrea Giusti

We investigate the emergent laws of gravity when Dark Energy and the de Sitter space-time are modelled as a critical Bose-Einstein condensate of a large number of soft gravitons $N_{\rm G}$. We argue that this scenario requires the presence of various regimes of gravity in which $N_{\rm G}$ scales in different ways. Moreover, the local gravitational interaction affecting baryonic matter can be naturally described in terms of gravitons pulled out from this Dark Energy condensate (DEC). We then explain the additional component of the acceleration at galactic scales, commonly attributed to dark matter, as the reaction of the DEC to the presence of baryonic matter. This additional dark force is also associated to gravitons pulled out from the DEC and correctly reproduces the MOND acceleration. It also allows for an effective description in terms of General Relativity sourced by an anisotropic fluid. We finally calculate the mass ratio between the contribution of the apparent dark matter and the baryonic matter in a region of size $r$ at galactic scales and show that it is consistent with the $\Lambda$CDM predictions.

Publisher URL: http://arxiv.org/abs/1801.10374

DOI: arXiv:1801.10374v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.