3 years ago

Lorentzian Goldstone modes shared among photons and gravitons.

J. Jejelava, Z. Kepuladze, J.L. Chkareuli

It has long been known that photons and gravitons may appear as vector and tensor Goldstone modes caused \ by spontaneous Lorentz invariance violation (SLIV). Usually this approach is considered for photons and gravitons separately. We develop the emergent electrogravity theory consisting of the ordinary QED and the tensor field gravity model which mimics the linearized general relativity in Minkowski spacetime. In this theory, Lorentz symmetry appears incorporated into higher global symmetries of the length-fixing constraints put on the vector and tensor fields involved, $A_{\mu }^{2}=\pm M_{A}^{2}$ and $H_{\mu \nu }^{2}=\pm M_{H}^{2}$ ($M_{A}$ and $M_{H}$ are the proposed symmetry breaking scales). We show that such a SLIV pattern being related to breaking of global symmetries underlying these constraints induces the massless Goldstone and pseudo-Goldstone modes shared among photon and graviton. While for a vector field case the symmetry of the constraint coincides with Lorentz symmetry $SO(1,3)$ of the electrogravity Lagrangian, the tensor field constraint itself possesses much higher global symmetry $SO(7,3)$, whose spontaneous violation provides a sufficient number of zero modes collected in a graviton. Accordingly, while photon may only contain true Goldstone modes, graviton appears at least partially composed from pseudo-Goldstone modes rather than from pure Goldstone ones. When expressed in terms of these modes, the theory looks essentially nonlinear and contains a variety of Lorentz and $CPT$ violating couplings. However, all SLIV effects turn out to be strictly cancelled in the lowest order processes that is considered in some detail. How this emergent electrogravity theory could be observationally differed from conventional QED and GR theories is also briefly discussed.

Publisher URL: http://arxiv.org/abs/1709.02736

DOI: arXiv:1709.02736v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.