3 years ago

Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation.

Stephen C. Anco, Daniel Kraus

The modified Camassa-Holm (mCH) equation is a bi-Hamiltonian system possessing $N$-peakon weak solutions, for all $N\geq 1$, in the setting of an integral formulation which is used in analysis for studying local well-posedness, global existence, and wave breaking for non-peakon solutions. Unlike the original Camassa-Holm equation, the two Hamiltonians of the mCH equation do not reduce to conserved integrals (constants of motion) for $2$-peakon weak solutions. This perplexing situation is addressed here by finding an explicit conserved integral for $N$-peakon weak solutions for all $N\geq 2$. When $N$ is even, the conserved integral is shown to provide a Hamiltonian structure with the use of a natural Poisson bracket that arises from reduction of one of the Hamiltonian structures of the mCH equation. But when $N$ is odd, the Hamiltonian equations of motion arising from the conserved integral using this Poisson bracket are found to differ from the dynamical equations for the mCH $N$-peakon weak solutions. Moreover, the lack of conservation of the two Hamiltonians of the mCH equation when they are reduced to $2$-peakon weak solutions is shown to extend to $N$-peakon weak solutions for all $N\geq 2$. The connection between this loss of integrability structure and related work by Chang and Szmigielski on the Lax pair for the mCH equation is discussed.

Publisher URL: http://arxiv.org/abs/1708.02520

DOI: arXiv:1708.02520v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.