Simplified convergence proof in B\'ezier finite elements on D-dimensional simplex.
By using a general formalism, we expose a simplified proof of the convergence of the B\'ezier polynomials attached to a continuous function defined in arbitrary dimensional simplex. We obtain an error estimate that contains the error in approximating by exponential functions. Our new proof is based on the topological Stone-Weierstrass theorem.
Publisher URL: http://arxiv.org/abs/1801.10210
DOI: arXiv:1801.10210v1
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.