3 years ago

Using short drive laser pulses to achieve net focusing forces in tailored dual grating dielectric structures.

Ulrich Dorda, Willi Kuropka, Frank Mayet, Ralph Assmann

Laser-driven grating type DLA (Dielectric Laser Accelerator) structures have been shown to produce accelerating gradients on the order of GeV/m. In simple $\beta$-matched grating structures due to the nature of the laser induced steady-state in-channel fields the per period forces on the particles are mostly in longitudinal direction. Even though strong transverse magnetic and electric fields are present, the net focusing effect over one period at maximum energy gain is negligible in the case of relativistic electrons. Stable acceleration of realistic electron beams in a DLA channel however requires the presence of significant net transverse forces. In this work we simulate and study the effect of using the transient temporal shape of short Gaussian drive laser pulses in order to achieve suitable field configurations for potentially stable acceleration of relativistic electrons in the horizontal plane. In order to achieve this, both the laser pulse and the grating geometry are optimized. Simulations conducted with the Particle-In-Cell code VSim 7.2 are shown for both the transient and steady state/long pulse case. Finally we investigate how the drive laser phase dependence of the focusing forces could affect a potential DLA-based focusing lattice.

Publisher URL: http://arxiv.org/abs/1801.10373

DOI: arXiv:1801.10373v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.