5 years ago

The LC8 Recognition Motif Preferentially Samples Polyproline II Structure in Its Free State

The LC8 Recognition Motif Preferentially Samples Polyproline II Structure in Its Free State
Malene Ringkjøbing Jensen, Jessica L. Morgan, Valéry Ozenne, Elisar Barbar, Martin Blackledge
LC8 is a ubiquitous hub protein that binds intrinsically disordered proteins and promotes their assembly into higher-order complexes. A common feature among the more than 100 essential LC8 binding proteins is that in the 10–12-amino acid recognition sequence there is a conserved QT motif but variable amino acids N- and C-terminal to the QT pair. The sequence diversity among LC8 binding partners implies that structural factors also contribute to specificity. To investigate whether one such factor is the transient secondary structure favored by an LC8 binding sequence, we report here a molecular ensemble description of ICTL, a domain of the dynein intermediate chain that includes binding sites for light chains LC8 and Tctex1. Nuclear magnetic resonance secondary chemical shifts and residual dipolar coupling values combined with ensemble generation and selection algorithms indicate a deviation from statistical (random) coil behavior with an elevated population of polyproline II (PPII) conformations for the ICTL regions that bind LC8 and Tctex1. Independent measurements of one- and three-bond scalar couplings confirm the PPII transient secondary structure propensity. Given that in the IC/Tctex1/LC8 ternary complex ICTL forms a β-strand at the interface of Tctex1 and LC8, we hypothesize that a PPII conformation may facilitate its initial docking and insertion into the binding cleft of the β-sheet LC8 dimer interface. Molecular ensemble calculations for intrinsically disordered LC8 binding partners also reveal PPII conformational sampling within and proximate to the LC8 recognition motifs, suggesting that a preference for a PPII conformation is general for LC8 binding partners.

Publisher URL: http://dx.doi.org/10.1021/acs.biochem.7b00552

DOI: 10.1021/acs.biochem.7b00552

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.