4 years ago

Enhanced Stabilization in Dried Silk Fibroin Matrices

Enhanced Stabilization in Dried Silk Fibroin Matrices
Miaochan Zhi, David L. Kaplan, Jonathan A. Kluge, Adrian B. Li, Fiorenzo G. Omenetto, Marcus T. Cicerone
Preliminary studies have shown that silk fibroin can protect biomacromolecules from thermal degradation, but a deeper understanding of underlying mechanisms needed to fully leverage the stabilizing potential of this matrix has not been realized. In this study, we investigate stabilization of plasma C-reactive protein (CRP), a diagnostic indicator of infection or inflammation, to gain insight into stabilizing mechanisms of silk. We observed that the addition of antiplasticizing excipients that suppress β-relaxation amplitudes in silk matrices resulted in enhanced stability of plasma CRP. These observations are consistent with those made in sugar-glass-based protein-stabilizing matrices and suggest fundamental insight into mechanisms as well as practical strategies to employ with silk protein matrices for enhanced stabilization utility.

Publisher URL: http://dx.doi.org/10.1021/acs.biomac.7b00857

DOI: 10.1021/acs.biomac.7b00857

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.