3 years ago

Evaluating the effect of rain on the fate of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) accumulated in polluted trees in Amman, Jordan

Shadi Moqbel, Monther Abdelhadi, Assal Haddad

Abstract

Open combustion of solid waste is one of the main sources of the emission of dioxin and dioxin-like compounds (DLCs). Ambient dioxin will eventually undergo depositions on soils and tree leaves. Pine trees have shown an ability to store dioxin in their needles allowing biomonitoring of dioxin atmospheric concentrations. Infiltration can transport dioxin to greater depths into the ground, on one hand, while vaporization can allow dioxin to return back to the atmosphere on the other. Several studies evaluated the migration of dioxin between two compartments; however, few studies have attempted to understand the fate of non-conservative PCDDs and PCDFs in an unsteady state system of more than two mediums. This study focused on the transportation of dioxin between polluted trees and the underlying soil through the effect of rain water. For approximately 10 years, pine trees in this study have been exposed to emissions generated by the open combustion of municipal solid waste (MSW) from a fixed location. Soil samples located further from the point source had generally lower dioxin concentrations. Dioxin concentrations were correlated to distance from the source using least square regression. Soil samples below contaminated trees had dioxin concentrations 10–35% greater than the calculated measurements for the same spots using the regression model. By detecting these spikes in concentrations, it was possible to identify pools of dioxin found directly under the contaminated trees—indicating a rinsing effect of rain water on the stored dioxin on the trees’ needles.

Publisher URL: https://link.springer.com/article/10.1007/s11356-018-1363-1

DOI: 10.1007/s11356-018-1363-1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.