3 years ago

SESR: Single Image Super Resolution with Recursive Squeeze and Excitation Networks.

Xiang Li, Ying Tai, Jian Yang, Xi Cheng

Single image super resolution is a very important computer vision task, with a wide range of applications. In recent years, the depth of the super-resolution model has been constantly increasing, but with a small increase in performance, it has brought a huge amount of computation and memory consumption. In this work, in order to make the super resolution models more effective, we proposed a novel single image super resolution method via recursive squeeze and excitation networks (SESR). By introducing the squeeze and excitation module, our SESR can model the interdependencies and relationships between channels and that makes our model more efficiency. In addition, the recursive structure and progressive reconstruction method in our model minimized the layers and parameters and enabled SESR to simultaneously train multi-scale super resolution in a single model. After evaluating on four benchmark test sets, our model is proved to be above the state-of-the-art methods in terms of speed and accuracy.

Publisher URL: http://arxiv.org/abs/1801.10319

DOI: arXiv:1801.10319v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.