3 years ago

Derivative-Free Failure Avoidance Control for Manipulation using Learned Support Constraints.

Roy Fox, Michael Laskey, Ken Goldberg, Jonathan Lee

Learning to accomplish tasks such as driving, grasping or surgery from supervisor demonstrations can be risky when the execution of the learned policy leads to col- lisions and other costly failures. Adding explicit constraints to stay within safe zones is often not possible when the state representations are complex. Furthermore, enforcing these constraints during execution of the learned policy can be difficult in environments where dynamics are not known. In this paper, we propose a two-phase method for safe control from demonstrations in robotic manipulation tasks where changes in state are limited by the magnitude of control applied. In the first phase, we use support estimation of supervisor demonstrations to infer implicit constraints on states in addition to learning a policy directly from the observed controls. We also propose a time-varying modification to the support estimation problem allowing for accurate estimation on sequential tasks. In the second phase, we present a switching policy to prevent the robot from leaving safe regions of the state space during run time using the decision function of the estimated support. The policy switches between the robot's learned policy and a novel failure avoidance policy depending on the distance to the boundary of the support. We prove that inferred constraints are guaranteed to be enforced using this failure avoidance policy if the support is well-estimated. A simulated pushing task suggests that support estimation and failure avoidance control can reduce failures by 87% while sacrificing only 40% of performance. On a line tracking task using a da Vinci Surgical Robot, failure avoidance control reduced failures by 84%.

Publisher URL: http://arxiv.org/abs/1801.10321

DOI: arXiv:1801.10321v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.