3 years ago

Robust 3D Human Motion Reconstruction Via Dynamic Template Construction.

Jinwei Ye, Yu Ji, Zhong Li, Wei Yang, Jingyi Yu

In multi-view human body capture systems, the recovered 3D geometry or even the acquired imagery data can be heavily corrupted due to occlusions, noise, limited field of- view, etc. Direct estimation of 3D pose, body shape or motion on these low-quality data has been traditionally challenging.In this paper, we present a graph-based non-rigid shape registration framework that can simultaneously recover 3D human body geometry and estimate pose/motion at high fidelity.Our approach first generates a global full-body template by registering all poses in the acquired motion sequence.We then construct a deformable graph by utilizing the rigid components in the global template. We directly warp the global template graph back to each motion frame in order to fill in missing geometry. Specifically, we combine local rigidity and temporal coherence constraints to maintain geometry and motion consistencies. Comprehensive experiments on various scenes show that our method is accurate and robust even in the presence of drastic motions.

Publisher URL: http://arxiv.org/abs/1801.10434

DOI: arXiv:1801.10434v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.