3 years ago

Multi-Layer Competitive-Cooperative Framework for Performance Enhancement of Differential Evolution.

Shao Yong Zheng, Kit Sang Tang, Li Ming Zheng, Sheng Xin Zhang, Wing Shing Chan

Differential Evolution (DE) is one of the most powerful optimizers in the evolutionary algorithm (EA) family. In recent years, many DE variants have been proposed to enhance performance. However, when compared with each other, significant differences in performances are seldomly observed. To meet this challenge of a more significant improvement, this paper proposes a multi-layer competitive-cooperative (MLCC) framework to combine the advantages of multiple DEs. Existing multi-method strategies commonly use a multi-population based structure, which classifies the entire population into several subpopulations and evolve individuals only in their corresponding subgroups. MLCC proposes to implement a parallel structure with the entire population simultaneously monitored by multiple DEs assigned in multiple layers. Each individual can store, utilize and update its evolution information in different layers by using a novel individual preference based layer selecting (IPLS) mechanism and a computational resource allocation bias (RAB) mechanism. In IPLS, individuals only connect to one favorite layer. While in RAB, high quality solutions are evolved by considering all the layers. In this way, the multiple layers work in a competitive and cooperative manner. The proposed MLCC framework has been implemented on several highly competitive DEs. Experimental studies show that MLCC variants significantly outperform the baseline DEs as well as several state-of-the-art and up-to-date DEs on the CEC benchmark functions.

Publisher URL: http://arxiv.org/abs/1801.10546

DOI: arXiv:1801.10546v1

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.