3 years ago

CodeSum: Translate Program Language to Natural Language.

Zhi Jin, Ge Li, Yuhan Wei, Xing Hu

During software maintenance, programmers spend a lot of time on code comprehension. Reading comments is an effective way for programmers to reduce the reading and navigating time when comprehending source code. Therefore, as a critical task in software engineering, code summarization aims to generate brief natural language descriptions for source code. In this paper, we propose a new code summarization model named CodeSum. CodeSum exploits the attention-based sequence-to-sequence (Seq2Seq) neural network with Structure-based Traversal (SBT) of Abstract Syntax Trees (AST). The AST sequences generated by SBT can better present the structure of ASTs and keep unambiguous. We conduct experiments on three large-scale corpora in different program languages, i.e., Java, C#, and SQL, in which Java corpus is our new proposed industry code extracted from Github. Experimental results show that our method CodeSum outperforms the state-of-the-art significantly.

Publisher URL: http://arxiv.org/abs/1708.01837

DOI: arXiv:1708.01837v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.