3 years ago

Denoising of 3D magnetic resonance images with multi-channel residual learning of convolutional neural network.

Xiayu Xu, Weiqiang Dou, Luc Vosters, Yue Sun, Dongsheng Jiang, Tao Tan

The denoising of magnetic resonance (MR) images is a task of great importance for improving the acquired image quality. Many methods have been proposed in the literature to retrieve noise free images with good performances. Howerever, the state-of-the-art denoising methods, all needs a time-consuming optimization processes and their performance strongly depend on the estimated noise level parameter. Within this manuscript we propose the idea of denoising MRI Rician noise using a convolutional neural network. The advantage of the proposed methodology is that the learning based model can be directly used in the denosing process without optimization and even without the noise level parameter. Specifically, a ten convolutional layers neural network combined with residual learning and multi-channel strategy was proposed. Two training ways: training on a specific noise level and training on a general level were conducted to demonstrate the capability of our methods. Experimental results over synthetic and real 3D MR data demonstrate our proposed network can achieve superior performance compared with other methods in term of both of the peak signal to noise ratio and the global of structure similarity index. Without noise level parameter, our general noise-applicable model is also better than the other compared methods in two datasets. Furthermore, our training model shows good general applicability.

Publisher URL: http://arxiv.org/abs/1712.08726

DOI: arXiv:1712.08726v2

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.