5 years ago

Selective Catalytic B–H Arylation of o-Carboanyl Aldehydes by a Transient Directing Strategy

Selective Catalytic B–H Arylation of o-Carboanyl Aldehydes by a Transient Directing Strategy
Fei Xu, Hong Yan, Jing Zhao, Hongning Zheng, Xiaolei Zhang, Jie Li
Carboranyl aldehydes are among the most useful synthons in derivatization of carboranes. However, compared to the utilization of carboranyl carboxylic acids in selective B–H bond functionalizations, the synthetic application of carboranyl aldehydes is limited due to the weakly coordinating nature of the aldehyde group. Herein, the direct arylation of o-carboranyl aldehydes has been developed via Pd-catalyzed cage B–H bond functionalization. With the help of glycine to generate a directing group (DG) in situ, a series of cage B(4,5)-diarylated- and B(4)-monoarylated-o-carboranyl aldehydes were obtained in good to excellent yields with high selectivity. A wide range of functional groups are tolerated. The aldehyde group in the B–H arylated products could be readily removed or transformed into o-carboranyl methanol. A plausible catalytic cycle for B–H arylation was proposed based on control experiments and stoichiometric reactions, including the isolation of a key bicyclic palladium complex.

Publisher URL: http://dx.doi.org/10.1021/jacs.7b07160

DOI: 10.1021/jacs.7b07160

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.