3 years ago

Surface reconstruction from unorganized points with l0 gradient minimization

To reconstruct surface from unorganized points in three-dimensional Euclidean space, we propose a novel efficient and fast method by using l 0 gradient minimization, which can directly measure the sparsity of a solution and produce sharper surfaces. Therefore, the proposed method is particularly effective for sharpening major edges and removing noise. Unlike the Poisson surface reconstruction approach and its extensions, our method does not depend on the accurate directions of normal vectors of the unorganized points. The resulting algorithm is developed using a half-quadratic splitting method and is based on decoupled iterations that are alternating over a smoothing step realized by a Poisson approach and an edge-preserving step through an optimization formulation. This iterative algorithm is easy to implement. Various tests are presented to demonstrate that our method is robust to point noise, normal noise and data holes, and thus produces good surface reconstruction results.

Publisher URL: www.sciencedirect.com/science

DOI: S1077314218300092

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.