3 years ago

Synthesis and Reactivity of Palladium(II) Alkyl Complexes that Contain Phosphine-cyclopentanesulfonate Ligands

Synthesis and Reactivity of Palladium(II) Alkyl Complexes that Contain Phosphine-cyclopentanesulfonate Ligands
Richard F. Jordan, Rebecca E. Black
The synthesis of the phosphine-cyclopentanesulfonate pro-ligands Li/K[2-PPh2-cyclopentanesulfonate] (Li/K[2a]), Li/K[2-P(2-OMe-Ph)2-cyclopentanesulfonate] (Li/K[2b]), and H[2b], and the corresponding Pd(II) alkyl complexes (κ2-P,O-2a)PdMe(pyridine) (3a) and (κ2-P,O-2b)PdMe(pyridine) (3b) is described. The sulfonate-bridged base-free dimer {(2b)PdMe}2 (4b) was synthesized by abstraction of pyridine from 3b using B(C6F5)3. The borane-coordinated base-free dimer [{2b·B(C6F5)3}PdMe]2 (5b), in which B(C6F5)3 binds to a sulfonate oxygen, was prepared by addition of 1 equiv of B(C6F5)3 per Pd to 4b or addition of 2 equiv of B(C6F5)3 to 3b. Compounds 3b, 4b, and 5b polymerize ethylene with low activity (up to 210 kg mol–1 h–1 at 250 psi and 80 °C) to linear polyethylene (Mn = 1950–5250 Da) with predominantly internal olefin placements. 3b and 4b copolymerize ethylene with methyl acrylate to linear copolymers that contain up to 11.7 mol % methyl acrylate, which is incorporated as −CH2CH(CO2Me)CH2– (80%) in-chain units and −CH2CH(CO2Me)Me (8%) and −CH2CH═CH(CO2Me) (12%) chain-end units. 3b and 4b also copolymerize ethylene with vinyl fluoride to linear copolymers that contain up to 0.41 mol % vinyl fluoride, which is incorporated as −CH2CHFCH2– (∼80%) in-chain units and −CH2CF2H (7%), −CH2CHFCH3 (5%), and −CH2CH2F (8%) chain-end units. Complexes 3b and 4b are more stable and active in ethylene polymerization than analogous (PAr2-CH2CH2SO3)PdR catalysts, but are less active than analogous (PAr2-arenesulfonate)PdR catalysts. Low-temperature NMR studies show that 4b reacts with ethylene below −10 °C to form the ethylene adduct cis-P,R-(2b)PdMe(ethylene) (7b), which undergoes ethylene insertion at 5 °C. DFT calculations for a model (PMe2-cyclopentanesulfonate)Pd(Pr)(ethylene) species show that ethylene insertion proceeds by cis-P,R/trans-P,R isomerization followed by migratory insertion, and that the lower activity of 3b and 4b vis-à-vis analogous (PAr2-arenesulfonate)PdR catalysts results from a higher barrier for migratory insertion of the trans-P,R isomer.

Publisher URL: http://dx.doi.org/10.1021/acs.organomet.7b00572

DOI: 10.1021/acs.organomet.7b00572

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.