5 years ago

All-Small-Molecule Nonfullerene Organic Solar Cells with High Fill Factor and High Efficiency over 10%

All-Small-Molecule Nonfullerene Organic Solar Cells with High Fill Factor and High Efficiency over 10%
Chunfeng Zhang, Lingwei Xue, William Morrison, Katherine Park, Yindong Zhang, Yongfang Li, Min Xiao, Haijun Bin, Yankang Yang, Zhi-Guo Zhang, Beibei Qiu
We synthesized two wide bandgap A–D–A structured p-type organic semiconductor (p-OS) small molecules with weak electron-withdrawing ester end groups: SM1 with cyano group (CN) on the ester group and SM2 without the CN group. SM1 showed stronger absorption, lower-lying HOMO energy level, and higher hole mobility in comparison with that of SM2 without the CN groups. The all-small-molecule organic solar cell (SM-OSC) with SM1 as donor and a narrow bandgap n-OS IDIC as acceptor demonstrated a high power conversion efficiency (PCE) of 10.11% and a high fill factor (FF) of 73.55%, while the PCE of the device based on SM2:IDIC is only 5.32% under the same device fabrication condition. The PCE of 10.11% and FF of 73.55% for the SM1-based device are the highest values for the nonfullerene SM-OSCs reported in the literature so far. The results indicate that the cyano substitution in SM1 plays an important role in improving the photovoltaic performance of the p-OS donors in the nonfullerene SM-OSC. In addition, the photoinduced force microscopy (PiFM) was first used in OSCs to characterize the morphology of its donor/acceptor blend active layer.

Publisher URL: http://dx.doi.org/10.1021/acs.chemmater.7b02536

DOI: 10.1021/acs.chemmater.7b02536

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.