3 years ago

Rapid ultrasonic and microwave-assisted micellar extraction of zingiberone, shogaol and gingerols from gingers using biosurfactants

Two kinds of extraction methods ultrasonic-assisted micellar extraction (UAME) and microwave-assisted micellar extraction (MAME) coupled with ultra-high performance liquid chromatography with ultraviolet detector (UHPLC-UV) were developed and evaluated for extraction and determination of zingerone, 6-gingerol, 8-gingerol, 6-shogaol and 10-gingerol in Rhizoma Zingiberis and Rhizoma Zingiberis Preparata. A biosurfactant, hyodeoxycholic acid sodium salt, was used in micellar extraction. Several experimental parameters were studied separately by a univariate method. The result indicated that the MAME was more efficient than UAME. The optimal conditions of MAME were as follows: 100mM of hyodeoxycholic acid sodium salt was used as surfactant, the irradiation time was set at 10s and the extraction temperature was set at 60°C. The validation results indicated that the limits of detection were in the range of 3.80-8.11ng/mL. The average recoveries were in the range of 87.32-103.12% for the two samples at two spiking levels. Compared with other reported methods, the proposed MAME-UHPLC-UV method was more effective, quicker (10s) and more eco-friendly.

Publisher URL: www.sciencedirect.com/science

DOI: S0021967317311366

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.