3 years ago

Membrane-embedded substrate recognition by cytochrome P450 3A4.

John C Hackett
Cytochrome P450 3A4 (CYP3A4) is the dominant xenobiotic-metabolizing enzyme in the liver and intestine and is involved in the disposition of more than 50% of drugs. Owing to its ability to bind multiple substrates, its reaction kinetics are complex, and its association with the microsomal membrane confounds our understanding of how this enzyme recognizes and recruits diverse substrates. Testosterone (TST) hydroxylation is the prototypical CYP3A4 reaction, displaying positive homotropic cooperativity with three binding sites. Here, exploiting the capability of accelerated molecular dynamics (aMD) to sample events in the millisecond regime, I performed > 25-µs aMD simulations in the presence of three TST molecules. These simulations identified high-occupancy surfacebinding sites as well as a pathway for TST ingress into the CYP3A4 active site originating in the membrane. Adaptive biasing force analysis of the latter pathway revealed a metastable intermediate that could constitute a third binding site at high TST concentrations. Prompted by the observation that interactions between TST and the G'-helix mobilize the ligand into the active site, a free-energy analysis of TST distribution in the membrane was conducted and revealed that the depth of the G'-helix is optimal for extracting TST. In summary, these simulations confirm separate, but adjacent substrate-binding sites within the enzyme and the existence of an auxiliary TST-binding site. The broader impact of these simulations is that they support a mechanism in which cytochromes P450 directly recruit membrane-solubilized substrates.

Publisher URL: http://doi.org/10.1074/jbc.RA117.000961

DOI: 10.1074/jbc.RA117.000961

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.