4 years ago

Root cause investigation of deviations in protein chromatography based on mechanistic models and artificial neural networks

In protein chromatography, process variations, such as aging of column or process errors, can result in deviations of the product and impurity levels. Consequently, the process performance described by purity, yield, or production rate may decrease. Based on visual inspection of the UV signal, it is hard to identify the source of the error and almost unfeasible to determine the quantity of deviation. The problem becomes even more pronounced, if multiple root causes of the deviation are interconnected and lead to an observable deviation. In the presented work, a novel method based on the combination of mechanistic chromatography models and the artificial neural networks is suggested to solve this problem. In a case study using a model protein mixture, the determination of deviations in column capacity and elution gradient length was shown. Maximal errors of 1.5% and 4.90% for the prediction of deviation in column capacity and elution gradient length respectively demonstrated the capability of this method for root cause investigation.

Publisher URL: www.sciencedirect.com/science

DOI: S0021967317311330

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.