3 years ago

Dynamical Behavior of Hydration Water Molecules between Phospholipid Membranes

Dynamical Behavior of Hydration Water Molecules between Phospholipid Membranes
Nobuaki Takahashi, Shin-ichi Takata, Takeshi Yamada, Hideki Seto, Taiki Tominaga
The dynamical behavior of hydration water sandwiched between 1,2-dimyristyl-sn-glycero-3-phosphocholine (DMPC) bilayers was investigated by quasi-elastic neutron scattering (QENS) in the range between 275 and 316 K, where the main transition temperature of DMPC is interposed. The results revealed that the hydration water could be categorized into three types of water: (1) free water, whose dynamical behavior is slightly different from that of bulk water; (2) loosely bound water, whose dynamical behavior is 1 order of magnitude slower than that of the free water; and (3) tightly bound water, whose dynamical behavior is comparable with that of DMPC molecules. The number of loosely bound and tightly bound water molecules per DMPC molecule monotonically decreased and increased with decreasing temperature, respectively, and the sum of these water molecules remained constant. The number of free water molecules per DMPC molecule was constant in the measured temperature range.

Publisher URL: http://dx.doi.org/10.1021/acs.jpcb.7b01276

DOI: 10.1021/acs.jpcb.7b01276

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.