Evaluation of peak and residual conditions of actively confined concrete using neuro-fuzzy and neural computing techniques
Abstract
This paper investigates the ability of four artificial intelligence techniques, including artificial neural network (ANN), radial basis neural network (RBNN), adaptive neuro-fuzzy inference system (ANFIS) with grid partitioning, and ANFIS with fuzzy c-means clustering, to predict the peak and residual conditions of actively confined concrete. A large experimental test database that consists of 377 axial compression test results of actively confined concrete specimens was assembled from the published literature, and it was used to train, test, and validate the four models proposed in this paper using the mentioned artificial intelligence techniques. The results show that all of the neural network and ANFIS models fit well with the experimental results, and they outperform the conventional models. Among the artificial intelligence models investigated, RBNN model is found to be the most accurate to predict the peak and residual conditions of actively confined concrete. The predictions of each proposed model are subsequently used to study the interdependence of critical parameters and their influence on the behavior of actively confined concrete.
Publisher URL: https://link.springer.com/article/10.1007/s00521-016-2492-4
DOI: 10.1007/s00521-016-2492-4
Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.
Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.