5 years ago

A quantum particle swarm optimization driven urban traffic light scheduling model

Cong Nie, Huan Wang, Zhenyu Qiu, Liping Yan, Wenbin Hu

Abstract

Urban traffic congestion becomes a severe problem for many cities all around the world. How to alleviate traffic congestions in real cities is a challenging problem. Benefited from concise and efficient evolution rules, the Biham, Middleton and Levine (BML) model has a great potential to provide favorable results in the dynamic and uncertain traffic flows within an urban network. In this paper, an enhanced BML model (EBML) is proposed to effectively simulate the urban traffic where the timing scheduling optimization algorithm (TSO) based on the quantum particle swarm optimization is creatively introduced to optimize the timing scheduling of traffic light. The main contributions include that: (1) The actual urban road network with different two-way multi-lane roads is firstly mapped into the theoretical lattice space of BML. And the corresponding updating rules of each lattice site are proposed to control vehicle dynamics; (2) compared with BML, a much deeper insight into the phase transition and traffic congestions is provided in EBML. And the interference among different road capacities on forming traffic congestions is elaborated; (3) based on the scheduling simulation of EBML, TSO optimizes the timing scheduling of traffic lights to alleviate traffic congestions. Extensive comparative experiments reveal that TSO can achieve excellent optimization performances in real cases.

Publisher URL: https://link.springer.com/article/10.1007/s00521-016-2508-0

DOI: 10.1007/s00521-016-2508-0

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.