5 years ago

Particle classification optimization-based BP network for telecommunication customer churn prediction

Xuanmiao An, Jia Shi, Oguti Ann Move, Bo Jin, Ruiyun Yu, Yonghe Liu

Abstract

Customer churn prediction is critical for telecommunication companies to retain users and provide customized services. In this paper, a particle classification optimization-based BP network for telecommunication customer churn prediction (PBCCP) algorithm is proposed, which iteratively executes the particle classification optimization (PCO) and the particle fitness calculation (PFC). PCO classifies the particles into three categories according to their fitness values, and updates the velocity of different category particles using distinct equations. PFC calculates the fitness value of a particle in each forward training process of a BP neural network. PBCCP optimizes the initial weights and thresholds of the BP neural network, and brings remarkable improvement on customer churn prediction accuracy.

Publisher URL: https://link.springer.com/article/10.1007/s00521-016-2477-3

DOI: 10.1007/s00521-016-2477-3

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.