5 years ago

Three-Dimensional Graphene Foam–Polymer Composite with Superior Deicing Efficiency and Strength

Three-Dimensional
Graphene Foam–Polymer
Composite with Superior Deicing Efficiency and Strength
Jenniffer Bustillos, Benjamin Boesl, Cheng Zhang, Arvind Agarwal
The adhesion of ice severely compromises the aerodynamic performance of aircrafts operating under critically low-temperature conditions to their surfaces. In this study, highly thermally and electrically conductive graphene foam (GrF) polymer composite is fabricated. GrF–polydimethylsiloxane (PDMS) deicing composite exhibits superior deicing efficiency of 477% and electrical conductivities of 500 S m–1 with only 0.1 vol % graphene foam addition as compared to other nanocarbon-based deicing systems. The three-dimensional interconnected architecture of GrF allows the effective deicing of surfaces by employing low power densities (0.2 W cm–2). Electrothermal stability of the GrF–PDMS composite was proven after enduring 100 cycles of the dc loading–unloading current. Moreover, multifunctional GrF–PDMS deicing composite provides simultaneous mechanical reinforcement by the effective transfer and absorption of loads resulting in a 23% and 18% increase in elastic modulus and tensile strength, respectively, as compared to pure PDMS. The enhanced efficiency of the GrF–PDMS deicing composite is a novel alternative to current high-power consumption deicing systems.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b18346

DOI: 10.1021/acsami.7b18346

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.