5 years ago

Localized Electrothermal Annealing with Nanowatt Power for a Silicon Nanowire Field-Effect Transistor

Localized
Electrothermal Annealing with Nanowatt Power for a Silicon Nanowire
Field-Effect Transistor
Yang-Kyu Choi, Byung-Hyun Lee, Jun-Young Park, Hagyoul Bae, Geon-Beom Lee
This work investigates localized electrothermal annealing (ETA) with extremely low power consumption. The proposed method utilizes, for the first time, tunneling-current-induced Joule heat in a p-i-n diode, consisting of p-type, intrinsic, and n-type semiconductors. The consumed power used for dopant control is the lowest value ever reported. A metal-oxide-semiconductor field-effect transistor (MOSFET) composed of a p-i-n silicon nanowire, which is a substructure of a tunneling FET (TFET), was fabricated and utilized as a test platform to examine the annealing behaviors. A more than 2-fold increase in the on-state (ION) current was achieved using the ETA. Simulations are conducted to investigate the location of the hot spot and how its change in heat profile activates the dopants.

Publisher URL: http://dx.doi.org/10.1021/acsami.7b17794

DOI: 10.1021/acsami.7b17794

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.