3 years ago

Multi-stimuli responsive copper nanoclusters with bright red luminescence for quantifying acid phosphatase activity via redox-controlled luminescence switch

Multi-stimuli responsive copper nanoclusters with bright red luminescence for quantifying acid phosphatase activity via redox-controlled luminescence switch
Thiolate-protected copper nanoclusers (CuNCs) are emerging as a promising class of luminescent materials since its unique optical properties such as aggregation-induced emission (AIE) and intriguing molecular-like behavior have been explored for sensing application. In this work, multi-stimuli responsive property of CuNCs was first investigated in depth and further adopted to develop a reliable and sensitive ACP assay. Penicilamine-capped CuNCs from a facile one-pot synthesis possess bright red luminescence and distinctive multi-stimuli responsive behaviors. Its sensitive and reversible response in luminescence to pH and temperature is originated from its inherent AIE property, and can be constructed as luminescent nanoswitches controlled by these external stimuli for precisely monitoring the change of environmental pH or temperature. The specific redox-responsive behavior of CuNC aggregates is found from severe luminescence quenching in the presence of a small amount of ferric or silver ions, and this sensitive response in luminescence to the preceding species is proved to be due to the conversion of Cu(II) from copper atoms with lower valence inside CuNCs. The luminescence switch of CuNC aggregates controlled by specific external potentials is further utilized to design a novel detection strategy for ACP activity. The great difference in luminescence quenching of CuNCs induced by iron(III) pyrophosphate (FePPi2) complex and free ferric ions enables us to quantitatively monitor ACP level by the luminescence change as variation of ACP activity in the assay solution. This assay is able to detect ACP level as lower as 0.8 U/L, and covers a broad linear scope of 100.0 U/L. This work reports redox-responsive property of CuNCs and its underlying nature due to the oxidation of its interior copper atoms, and provides a sensitive assay method for ACP activity which is sufficiently sensitive for practical measurement in real samples.

Publisher URL: www.sciencedirect.com/science

DOI: S0003267017307523

You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.