5 years ago

A Parametric Level Set Method for Electrical Impedance Tomography

, Anil Kumar Khambampati, Dong Liu, Jiangfeng Du
This paper presents an image reconstruction method based on parametric level set (PLS) method using electrical impedance tomography. The conductivity to be reconstructed was assumed to be piecewise constant and the geometry of the anomaly was represented by a shape-based PLS function, which we represent using Gaussian radial basis functions (GRBF). The representation of the PLS function significantly reduces the number of unknowns, and circumvents many difficulties that are associated with traditional level set (TLS) methods, such as regularization, re-initialization and use of signed distance function. PLS reconstruction results shown in this article are some of the first ones using experimental EIT data. The performance of the PLS method was tested with water tank data for two-phase visualization and with simulations which demonstrate the most popular biomedical application of EIT: lung imaging. In addition, robustness studies of the PLS method w.r.t width of the Gaussian function and GRBF centers were performed on simulated lung imaging data. The experimental and simulation results show that PLS method has significant improvement in image quality compared with the TLS reconstruction.
You might also like
Discover & Discuss Important Research

Keeping up-to-date with research can feel impossible, with papers being published faster than you'll ever be able to read them. That's where Researcher comes in: we're simplifying discovery and making important discussions happen. With over 19,000 sources, including peer-reviewed journals, preprints, blogs, universities, podcasts and Live events across 10 research areas, you'll never miss what's important to you. It's like social media, but better. Oh, and we should mention - it's free.

  • Download from Google Play
  • Download from App Store
  • Download from AppInChina

Researcher displays publicly available abstracts and doesn’t host any full article content. If the content is open access, we will direct clicks from the abstracts to the publisher website and display the PDF copy on our platform. Clicks to view the full text will be directed to the publisher website, where only users with subscriptions or access through their institution are able to view the full article.